I BEG YOUR PARDON TURTLES:�DON’T FORGET ABOUT DATA STRUCTURES

Ivan Kalas with Andrej Blaho�Department of Informatics Education�Comenius University, �842 15 Bratislava, Slovak Republic�tel/fax: + 421 7 724 826, �email: kalas@fmph.uniba.sk

Abstract

Data structures often play an only second-rate role in Logo literature and practice. Although there are some excellent Logo books devoted completely to data structures, these are not considered to be books for everyone – they are more academically-ori�ented advanced courses. Materials for students and/or beginners often push this topic into a fi�nal chapter with no obvious connection to turtle geometry.

We believe that Logo data structures can play natural component in mid-level Logo activities and try to illustrate that gap between them and turtle geometry does not need to exist. Instead, in this apparent gap there are doz�ens of excellent pure Logo activities for students-de�velopers.

Keywords

data structures, Logo, procedural and declarative �repre�sentations

� SEQ chapters * MERGEFORMAT �1�	Introduction

Since the beginning of the development of Comenius Logo (Super�Logo, MegaLogo, Multi�Logo in other countries) and especially when giving courses and seminars� at our university to future teachers we have had the feeling that data structures in Logo do not receive enough at�tention. In many Logo books they often play an only second-rate role. Materials for students and/or beginners often push this topic into a fi�nal chapter with no obvious connection to tur�tle geometry. We be�lieve that Logo data structures should play natural component in most non-trivial Logo ac�tivi�ties. The gap between data structures and turtle geometry does not need to exist at all. In�stead, in this apparent gap there are dozens of excellent pure Logo ac�tivities for students-deve�lo�pers.

�

Multiple turtles store lots of data: in their positions, shapes, headings. �What would David Hilbert guess the composition above is?

Our interest in data structures and their relationship to procedural structures (programs) has roots in our Lisp background and has been considerably shaped by [2]2 Neither the authors of that exceptional book nor us think that deep academically-oriented approach is necessary for engaging atomic data and more compound data structures into our concern. Both Lisp (Scheme) and Logo people consider their tool a powerful medium for exploring and express�ing ideas. Abelson and Sussman in [2]name three mechanisms for forming and exploring complex ideas:

primitive expressions (to represent basic entities of the programming language),

means of combination (to build compound expressions and data from simple ones),

means of abstraction (to name compound objects and manipulate them as units).

In the context of Logo data3 these three mechanisms are represented by atomic data struc�tures, the mechanism to build compound data out of simpler ones (list operation supple�mented by sentence, fput etc.) and the mechanism to give names to compound data (make command supplemented by let, name and the mechanism of procedures’ inputs). Following two lines illus�trate all three of them (to be studied more deeply later):

? make (melody (list (L8 (O2 (d (c (2c.)�? play :melody

Fortunately, modern versions of Logo make it possible to take data approach built on turtle geometry and thus profit from well-developed Logo tradition. We are getting much in reward for this decision:

visualisation, essential property of turtle geometry and all active teach�ing/learning com�puter environments (microworlds), see [7],

inconceivable extension of traditional turtle geometry activities, see for example [8]

important essential topics to think about (and thus build important concepts and develop our informatics culture). We have to choose suitable representation for data – proper choice is a powerful technique for controlling complexity. Moreo�ver, ... whenever we have two different representations of the same thing we can learn a great deal by comparing repre�sentations and translating descriptions from one representation into the other.

Shifting de�scriptions back and forth between representations can often lead to insights that are not inherent in either of the representations alone, see [1].

To cope with data structures is exciting experience which will sooner or later make us under�stand that in Logo there is hardly any difference between computer program and data.

� SEQ chapters * MERGEFORMAT �2�	Atomic data are gifts. Compound data are agreements

Comenius Logo atomic data are words and images. Words are sequences of characters and images are sequences of frames (we characterised them in detail in [4]) and Logo provides us with tools to reach these elements. However, both words and images represent elementary en�tities of the language and logically they are indivisible (any part of a word, i.e. zero, one or more characters is still a word. Any part of an image, i.e. zero, one or more frames is still an image). Atomic data objects serve as building material for more compound data be�cause they are by themselves not sufficient for many of the problems we want to cope with. Being the elementary concepts of the language, atomic data are gifts pre�sented by Logo. Another gift of the language is a mechanism for building data abstrac�tions, that is combined data objects rep�resenting compound data.

�

An image used as the default turtle shape in SuperLogo

Compound data – called data abstractions – elevate the conceptual level at which we can de�velop our projects: we will be talking about and working with points, vectors, texts, melodies, rectangles etc. These will be less compound data objects glued together to form single con�ceptual units. The gluing mechanism of Logo is enclosing into a list. This approach might be unusual to some Logo practitioners: we don’t consider words, images and lists the Logo data structures. Rather, we consider words and images the Logo data structures and list a mecha�nism for building more complex data structures atop of simpler ones. From the data structures perspective we consider list to be a verb rather than a noun: we will list things together. Each compound data structure will have certain meaning to us and to some primitive or user-de�fined procedures – it will be an agreement between us and some procedures.

In the following chapter we will present a sequence of data structures of growing conceptual complexity. We will outline several Logo projects to be further extended by students and teachers in many possible directions�. Many other (easy or advanced) data structures will not be mentioned here – we hope that the reader will soon get our message: the mechanism of data abstraction makes this “sequence” potentially infinite.

� SEQ chapters * MERGEFORMAT �3�	Short tour of Logo compound data structures

Our data structures tour will not show any new concepts to experienced Logo practitioners. Its goal is to illustrate an alternative viewpoint on data and traditional topics. We want to make a sample tour for a group of tourist guides to attract their attention to places which may latter be of interest for future tourists in their groups. Our vehicle will be the mechanism for building data ab�stractions and treating new compound objects directly as objects, not as a composi�tions of their parts.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �1�	Points

They will prevent us from forgetting that turtle geometry is not the only possible represen�ta�tion of geometric phenomena in Logo. A point is created by gluing together (listing to�gether) two atomic data objects, the x and y co-ordinates of the corresponding point in the graphics screen. It is very important to realise that a point is more than two numbers, a point is one compound object, not two sepa�rate numbers, thus we can give it a name:

? make (P1 pos

We will treat it as one piece of complex data. There are several primitive procedures that ac�cept this agreement. Except the pos operation which outputs a point, there are other proce�dures (primitive or user-defined) that expect points as their inputs:

? setpos :P1

Although there are Logo tools to obtain two parts of a point or to construct a point out of x and y co-ordinates, procedures like setx and sety do not understand the abstract no�tion of points, they are not a partner in this agreement.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �2�	Time

Let us study another compound data object, an output of the time primitive operation:

? sh time�[21 35 2 49]

It is a composition of four numbers representing hours, minutes, seconds and hundredths of a second. Obviously, not all lists of four numbers are times. For example, [25 -7 72 5] would not be accepted by any time processing procedure. Similar to points, we can name a time and pass it to a procedure:

? make (T1 time�? sh :T1�[21 37 10 63]�? sh time.plus :T1 [0 30 0 0]	; What time will be half an hour later?�[22 7 10 63]

It is not trivial to define correctly time algebra, i.e. operations like time.plus or time.difference. Usually, such definitions have to go inside the compound data objects. However, it is not important from outside. From outside, these procedures are just getting and/or producing time objects.

An alternative way how to represent time – or even more, the flow of time – is traditional clock with three (or four!) hands. Let us develop a simplified command to visualise the flow of time by rotating the seconds hand:

to show.time� setpc 0 setpw 20 pd fd 0 ; Draw a dot in the middle.� px ; Set penreverse mode.� setpc bg ; Make pen colour equal to the background.� seth 6 * item 3 time� setpw 2� draw.seconds.hand� show.seconds time�end	

�
to show.seconds :now�if heading <> 6 * item 3 :now ~� [draw.seconds.hand ~� rt 6 ~� draw.seconds.hand]� show.seconds time�end	

�to draw.seconds.hand� fd 60 pu bk 80 px fd 20�end�
Several further developments are possible here:

�

the clock should control three independent hands (or even the fourth one for visualising the hundredths of a second – this experiment is worth trying),

three hands may be more transparently controlled by three turtles. Soon, we will present a view on multiple turtles as repositories of data,

if the clock is depicted by turtles, there is no reason to stick the clock to one fixed place – why not to drag it atop of the world map with time zones so that the ac�tual time shift is visualised,

we can add a nice clock face, either regular or irregular, making use of traditional Logo turtle drawing tools.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �3�	Melody – a list of unknown length

Points are lists of two numbers, times are lists of four numbers. Other data object may, how�ever, contain unknown (variable) number of items. An example of such object is a melody:

? make (Yesterday ~�	[I21 T80 L8 O2 d c 2c. P e f# g# a b O3 c O2 b. 16a 2a. P ~�	 a a g f e d L4 f 8e e. d c 8e 8d d. O1 8a O2 c 8e 8e 2e]�? play :Yesterday

This list of words specifies the instrument to be used to perform the melody, its tempo, the de�fault notes’ length, octave specification, pauses and, obviously, the notes themselves. Most important about melodies is that the play command understands them and can perform them. Moreover, melodies can be constructed, processed or modified by Logo procedures:

? play (se :Yesterday [I40 T70] bf bf :Yesterday)

And yet another key point: due to its unknown length, to process a melody in a certain way may require a recursive approach. The reason is that melody inherently is a recursive data structure:

the empty list [] is a melody,

if :A is an acceptable word (not to be specified here) and :M is a melody, then fput :A :M is a melody.

Recursion is a usual control structure to cope with lists of things. If we are to replay the same melody on different instruments (specified by a list of instruments like [I73 I20 I32 I4 I45]) we may do it in the following way:

to replay :melody :instruments�	if empty? :instruments [stop]	; We suppose that melody contains no�	play fput first :instruments ~; instrument specification itself.�	:melody �	replay :melody bf :instruments�end

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �4�	Text

Let us agree that:

any Logo word is a text,

if w1, w2, ... are Logo words then [w1 w2 ...] is a text.

�

Texts are exciting data objects because turtles can type them in any specified font, colour (identical with the turtle’s actual pen colour), heading, position, style and size in the graphics screen. The setttext (set turtle text) primitive command is equipped with a chooser to spec�ify directly all technical settings (without knowing the fonts names, styles, sizes etc.). The ttext com�mand takes a text and makes each active turtle print it at its actual position and heading:

? repeat 5 ~�	[maketurtle repcount ~�		se [200 150] - random [400 300] ~�		random 360]�? tell [1 2 3 4 5]�? each [setpc random 15]�? settt [Arabia] [22 700 0]�? ttext [Let us Logo!]

When supported by the textsize operation�, the text typing commands offer dozens of com�plex Logo activities, see the figure bellow. Many of them may be used to illustrate essential concepts of text processing, informatics and DTP. They give us the chance to make many un�intended mistakes and discoveries with words rotations, colours, mirrors, margins, columns, texts aligned to curves etc. And more: as far as texts are composed of words and words are composed of characters (which are words as well), a lot of serious thinking will be done by students before they manage to align a text on the circle from outside, from inside etc. – a lot of serious work within amusing topic.

�

�
� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �5�	List of angles

�

Here the outside.area? predicate specifies that being inside means to be outside four big circles.

If we use the list mechanism to glue together several angles (without fixing their number), several bizarre Logo procedures may be developed to handle and visualise such data objects. In [5] G. Futchek describes an excellent method for gen�erating random mazes based on an in�put list of angles. A turtle (with its pen down) will pick at random one of the angles and turn that much right. Then it will move by fd 10 – unless the turtle has already visited that point. If this is the case, the turtle will pick another angle and try again, until all possible choices (angles) were applied from all reachable points within an area specified by a user-defined outside.area? predicate. To implement this strategy, the shuf�fle Logo primitive operation is extensively used (although Futchek in [5] presents several clever user-specified shuffling techniques – worth try�ing!):

to maze :angles�	maze1 shuffle :angles�end

to maze1 :options�	if empty? :options [stop]�	rt first :options�	pu fd 10	; Go and test if already visited.�	test or (dotcolor = pc) ~�		outside.area? pos�	bk 10�	iff [pd fd 10 maze1 shuffle :angles bk 10]�	lt first :options�	maze1 bf :options�end

Two points here are of our main concern now:

the outline of the final maze is specified by the out�side.area? predicate, thus the outline itself is in a way represented by this user-defined procedure. A simple modification of the maze and maze1 commands would be to send them also the second input – the name of the outline-specify�ing predicate, or even its definition list (see later). However, a question then arises: Is there any difference between the list of angles and the outline-specifying predicate from the data perspective? Later we will see that Logo procedure may be considered a regular data structure,

due to repeated shuffling of the input, the list of angles represents the resulting maze in an ambiguous way. Although this fact has some unpleasant theoretical consequences for Lisp-like languages�, we appreciate random choices in turtle geometry very much!

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �6�	List of Logo instructions

Certain lists of words (or even lists of lists and words) have very special structure – they re�semble Logo instructions, for example [fd 50 rt 45] or [if :in? [fd 50] [bk 50]]. There is a procedure which understands such lists and is able to run them as if they were true pieces of Logo programs:

? make (P1 [fd 100]�? run :P1�? :P1�Message: I don’t know what to do with [fd 100]�? repeat 4 [run :P1 rt 90]

The latest line is extraordinary! It combines usual command with running a value of P1! It seems like there is no difference between instructions and lists of instructions when run (evaluated) by run. In fact, for Logo an instruction in the command line is internally repre�sented by a list containing that instruction or instructions. Logo itself is represented by the run command, it internally runs instructions using the run command. It is essential to let our stu�dents realise that we have already encountered lists of instructions many times:

? repeat 5 [fd 150 rt 144]�? if :N > 10 [rt 75] [rt 45]�? make (i1 [rt 75]�? make (i2 [rt 45]�? if :N > 10 :i1 :I2			; Are the following 3 lines identical?�? if :N > 10 [run :i1] [run :i2]�? if :N > 10 [run [rt 75]] [run [rt 45]]

The second input to repeat structure is a list of instructions, the second and the third (optional) inputs to the if conditional statement are such lists. Therefore we can easily define the following control structure:

to forever :what�	run :what�	forever :what�end�? forever [fd 40 - random 80 rt random 5]

However, this is something very exceptional, it is a revolution in our traditional understanding of programs and data! In fact, some data objects are programs. Later we will see that each piece of program is a piece of data. There is no difference between them and we will build on this discovery several times later on.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �7�	Polygon list

If we type in repeat 4 [fd 100 rt 90], the turtle (in fact, all active turtles) will draw a square. We already know that the list [repeat 4 [fd 100 rt 90]] means the same. How�ever, while the first instruction is considered a procedural representation of a square, the sec�ond one is its declarative analogy. Another declarative representation of the same square would be a list [100 90 100 90 100 90 100 90] if only we acquire an agreement that the first item of the list means go forward 100, the second item means turn right 90 degrees, the third item go forward 100 etc. We can go even further (or deeper) and accept the repetition factors in such lists: [30 60 5 [50 10] 20 90] would mean go fd 30, turn rt 60, repeat 5 times (in the same way) the list [50 10], then go fd 20 and turn rt 90. Obviously, inside the inner list another list may occur ... etc. Let us call such structures polygon lists:

the empty list [] is a polygon list,

if a1 and a2 are numbers and [a3 a4 ...] is a polygon list, then [a1 a2 a3 a4 ...] is also a polygon list,

if r1 is a non-negative number and [a1 a2 ...], [b1 b2 ...] are polygon lists, then also [r1 [a1 a2 ...] b1 b2 ...] is a polygon list.

We can study several properties of a polygon list (its total length etc.) and we can define a command to correctly interpret it in a corresponding turtle geometry way:

to do.it :l�	if empty? :l [stop]�	test number? item 2 :l				; Which alternative?�	ift [fd first :l rt item 2 :l]�	iff [repeat first :l [do.it item 2 :l]]	; Repetition factor ...�	do.it bf bf :l					; Go on with the rest�end

�
�

These polygons are represented by the followingpolygon lists:

[10 [2 [9 [10 10] 0 90] 0 36]] and

[3 [20 90 160 -90 20 -90 160 90] ~

20 90 160 -90 20 -90 ~

3 [20 -90 160 90 20 90 160 -90] ~

20 -90 160 90 20 90]

�

Fortunately, there are also two primitive commands that understand polygon lists and can in�terpret them very fast: polygon and poly�gonline (the first one also fills the polygon in ac�tual filling colour). Several advanced data processing operations can be defined (e.g. trans�forming a turtle geometry com�mand into a corresponding polygon list). The most important here for us is that polygon lists contain lists which contain lists etc. They are recursive struc�tures par ex�cellence.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �8�	List of turtles

In any version of Logo with multiple turtles we are getting new and interesting data structure: the turtles themselves. The reason is that each turtle represents several pieces of data (not al�ways atomic) in itself: through its name, its home and actual positions, basic and current headings, pen state, filling colour and active shape colour, its shape, actual frame and anima�tion mode, its actual font etc. In fact, turtles are rather compound data structures by them�selves. When combined with other data structures and techniques, multiple turtles (practically unlimited in their number) provide Logo users with exceptional palette of possibilities. Let us examine some of them.

� REF List_of_turtles * MERGEFORMAT �3.8�.� SEQ turtles * MERGEFORMAT �1� List of turtles to be created

Let such structure be a list of the form [[name [x y] h] [name [x y] h]...] where each sublist represents a turtle to be created by the maketurtle command. First item of the sublist specifies its name, the second one specifies its home position and the last one its basic head�ing. To illustrate different data processing approaches, we show three equivalent defini�tions of a command to interpret the list:

to create.them :list�	if empty? :list [ask all [st] stop]�	let “it first :list�	maketurtle first :it se item 2 :it item 3 :it�	create.them bf :list�end�to create.them :list�	map [[it][maketurtle first :it se item 2 :it item 3 :it]] :list�	ask all [st]�end�to create.them :list�	local “it�	foreach “it :list [maketurtle first :it se item 2 :it item 3 :it]�	ask all [st]�end

� REF List_of_turtles * MERGEFORMAT �3.8�.� SEQ turtles * MERGEFORMAT �2� List of names to be asked to do ...

Any subset of all turtles may be given a name. Later we can use the name (of the list of tur�tles’ names) to ask them to run a list of instructions:

? make (girls [jenny marta sueli]�? make (to.do [repeat 10 [fd 10 rt 110 fd 5 lt 110]]�? ask :girls :to.do

We could have done the same by saying ask [jenny marta sueli] [repeat ...]�.

� REF List_of_turtles * MERGEFORMAT �3.8�.� SEQ turtles * MERGEFORMAT �3� Images and shapes to visualise data

As far as any turtle may take any image as its shape �, we can develop very exceptional modi�fi�cations of well known recursive curves of level N. Let us consider the famous Hilbert curve and implement it in the following way: turtle 0 – with its pen up – will move forward accord�ing to the usual Hilbert recursive strategy. However, instead of drawing a line, it will create several turtles: one per each elementary line segment � Therefore, the final composition will look like usual Hilbert curve, but will contain 4*:N+3 turtles instead of single piece of line. All turtles will have the same shape of 24 frames – a line segment rotated around a point into 24 different directions, see above. Thus, we built the curve out of the turtles’ bodies them�selves! The turtles now represent the Hilbert curve by themselves (by their shape, positions and headings). This is an exciting example of turtles as data structures!

�

to hilbert :l� erturtle all cs gs� maketurtle 0 [50 -100 0]� tell 0� pu � let “c 1� hilbert1 :l 1� erturtle 0� tell all�end

to my.fd :a� maketurtle :c se pos heading� ask :c [setshape :hilbert st pu]� make “c :c + 1� fd :a�end�
to hilbert1 :l :p� if :l < 0 [stop]� lt :p * 90� hilbert1 :l - 1 (- :p)� my.fd 20� rt :p * 90� hilbert1 :l - 1 :p� my.fd 20� hilbert1 :l - 1 :p� rt :p * 90� my.fd 20� hilbert1 :l - 1 (- :p)� lt :p * 90�end�
�
Turtles may represent serious bulks of data by their shapes – data which cannot be easily rep�resented by any other (traditional) means. For example, think about a map of a continent where each state is visualised by a turtle! To decide to which country a point belongs (clicked in the graphics screen by mouse) becomes a trivial task.

�

This is famous Hilbert curve of the level 3 composed of 63 turtles. As far as all of them are active,we can let them turn by rt 30 (the second figure), thenonce more rt 30 (the third figure), and once more rt 30 (the last figure).The figure used at the first page of this paper is a result of saying back 10to all Hilbert turtles when they are in their home positions and basic headings.

� REF List_of_turtles * MERGEFORMAT �3.8�.� SEQ turtles * MERGEFORMAT �4� Levels of turtles

�

One of the attributes of multiple turtles is their age, i.e. the order in which we created them. The age of turtles also defines the order of turtles' shapes when they overlap on the screen while moving: the younger the turtle is, the fewer turtles can cover it with their shapes. The youngest turtle is always on the top of all others. Let us develop a small project by creating a row of 10 turtles-houses named house1, house2, ... with small gaps in between. There will be another turtle – the animation turtle Tomash riding a bike, thus moving forward at the same line with the houses. Let Tomash be the youngest of all turtles, therefore he will overlap all houses while moving. However, we can redefine the age of already existing turtles by the re�order command and thus develop the following animation effect: if we click a house, we will let it become younger than Tomash – he will now move behind it. If we click the same house once more, the order will change once more and Tomash will move in front of it. To imple�ment this behaviour we will maintain two levels of houses: the older ones than Tho�mas and the younger ones. Whenever we click a house, it will be moved from olders to youngers or the other way round:

to in.row�	erturtle all cs gs�	repeat 10 [maketurtle word “house repc [-150 0] + repc * [45 0] ~�		ask word “house repc [setshape pick :houses st]]�	let (olders all�	let (youngers []�	maketurtle “Tomash [-220 0 90]�	ask “Tomash [setshape :bicycle ~�		setframemode “true ~�		setframe 1 ~�		pu st]�	move�end

to move�	if key? ~�		[case readkey ~�		[27 [stop] ~�		0 [if member? touched se :olders :youngers ~�		[change.age touched]]]]�	ask “Tomash [setframe frame + 2 fd 2]�	wait 50�	move�end�

�

to change.age :it �	if member? :it :olders ~�		[make “olders butmember :it :olders ~�		make “youngers fput :it :youngers] ~�		[make “olders fput :it :olders ~�		make “youngers butmember :it :youngers]�	reorder (se :olders “Tomash :youngers)�end

It would be easy to extend the in.row project so that whenever we click Tomash instead of a house, he will do the about turn.

� REF List_of_turtles * MERGEFORMAT �3.8�.� SEQ turtles * MERGEFORMAT �5� Screen animation agenda

�

Tomash created above is an animation turtle. As an alternative to basic turtles, animation tur�tles allow us to change the frames of their shapes at any time with the setframe com�mand. However, when we obtain or create nice multiple-frame images depicting complex move�ments of a character in all possible di�rections, we have to somehow control the tur�tle’s tra�jec�tory around the screen, i.e. we have to represent a kind of animation agenda to specify the ex�act headings of the movement, basic steps, shapes and frames of the turtle etc. Such agenda may be a list of the form:

[[heading step distance wait.time shape] ...] for example:�[[135 2 120 50 :tomash.south.east] ...]

and should be interpreted by a user-defined agenda-agent. Sometimes we have to involve similar planning for several animation turtles moving in parallel (taking into account exact timing, mutual interactions etc.). More complex agenda is needed then.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �9�	Sequence of keys

Let us implement a simple command which reads the keyboard and makes the turtle move North 10 steps (if the n key was pressed), move East 10 steps (if the e key was pressed) etc. In a way, the move command works with sequences of keys, a kind of special codes or represen�tation of certain turtle drawings�. Therefore, it is straightforward to modify the command so that it understands and interprets a given list of letters (as if keys pressed on the keyboard):

to move� case readchar ~� [n [seth 0 fd 10] ~� e [seth 90 fd 10] ~� s [seth 180 fd 10] ~� w [seth 270 fd 10] ~� q [stop] ~� [sound [550 20]]] ; Else ...� move�end�
to move.it :l� if empty? :l [stop]� case first :l ~� [n [seth 0 fd 10] ~� e [seth 90 fd 10] ~� s [seth 180 fd 10] ~� w [seth 270 fd 10] ~� [sound [550 20]]]� move.it bf :l�end�
�
Let us go on: we can give names to certain sequences (lists) of keys, thus start to build a kind of library of shapes. For example:

? make (step [n n w s e e n]

We can also modify the move.it command so that it accepts more complex sequences: beside n, e, s and w letters it may contain the names of other sequences, like [step s s step s s step s s step]:

Instead of playing a tone [550 20], this modification of move.it command considers any item of the input list other than n, e, s and w to be a variable and tries to inter�pret its value by itself, that is, by the move.it command.

to move.it :l�	if empty? :l [stop]�	case first :l ~�		[n [seth 0 fd 10] ~�		e [seth 90 fd 10] ~�		s [seth 180 fd 10] ~�		w [seth 270 fd 10] ~�		[move.it thing first :l]]�		move.it bf :l�end

Now, there is no reason not to try this:

? make (steps [n n w s e e n steps]�? move.it :steps

We have just created a surprising method of defining infinite recursive computation (drawing) through certain lists of words! If we wanted to elaborate even more, we would introduce a conditional tool� to stop the infinite drawing, thus developing a complex declarative lan�guage representing certain Logo recursive drawings.

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �10�	List of points. Vectors. Lists of vectors

We have already discussed points, let us now collect several points into a list. We can, for ex�ample, define an operation which recognizes the left mouse button’s clicks and collect the actual positions of the mouse cursor into a list:

to collect.points� op reverse collect.points1 []�end�
to collect.points1 :l� case readkey ~� [27 [op :l] ~� -2 [make “l fput mouse :l]]� op collect.points1 :l�end�
�
In this way, we can represent outlines of states or continents or various drawings, which can later be re-drawn without any changes or modified in one of many possible ways. Bellow we see a sequence of repeated transformation which deletes points which are too close to each other within the list of points.

� EMBED Word.Picture.6 ���

�

 However, a list of points [P1 P2 ...] is still only a list of points: we cannot reproduce the same drawing at different positions within the screen, we cannot reproduce it turned right by 45 degrees etc. – we cannot overcome the basic properties of Cartesian co-ordinate system. What we definitely can do is to shift it into dif�ferent representation – vector representation. And it is worth doing because (beside other nice properties of this alternative form), vectors are directly supported by SuperLogo. A vector is de�fined as a collection of all equivalent di�rected line segments. This concept coincides with the fact that in Logo we can consider a point P as:

a position in the graphics screen,

any displacement identical in direction and magnitude with the displacement of P from the origin.

We can say:

? make (A [20 50]�? make (B [35 10]

then Logo will understand correctly� expressions like :A+:B, 2*:B, :A-:B, :B-2*:A, 0.2*:B etc. – we are taking a serious step towards abstraction: we and Logo accept the concept of a vector as a single object, not the list of two co-ordinates. Our turtles will understand expres�sions like ask [Jenny Marta Sueli] [each [setpos pos + :A]] making these three tur�tles walk along the vector :A from their actual positions etc.

to do.points :l� if empty? :l [stop]� setpos first :l� pd � do.points bf :l�end�
to points.to.vectors :l� if empty? :l [op []]� if empty? bf :l [op []]� let (v (item 2 :l) - first :l� op fput :v points.to.vectors bf :l�end

to do.vectors :l� if empty? :l [stop]� each [setpos pos + first :l]� do.vectors bf :l�end�
�
points.to.vectors operation transforms list of points into a corresponding list of vectors, do.vectors makes each active turtle realise such list starting from its actual position. A lot of usual vector transformations can be involved in this operation. If the turtles are named 1, 2 … etc., then each [setpos pos + first :l] line can be replaced e.g. by

	 each [setpos pos + (9 + who)/10 * first :l]

�

�

thus resizing the original drawing by factors 1, 1.1, 1.2 … etc. Beside usual vector operations Logo also offers some more advanced ones. For example, we can directly rotate a vector clock-wise around the origin by a given angle. A point (i.e. a vector) obtained by rotating point (i.e. vector) :P by :n degrees will be denoted by :n/:P. Therefore, if we create a planet with its home position in e.g. [150 0] and its shape being item 2 :planets, then to let it rotate forever around the origin we just say forever [setpos 1 / pos]. If we create 20 turtles named 1, 2 … etc. at the same position [150 0], by saying forever [each [setpos who / pos]] we let them rotate at different speeds. We can also let one turtle (the Moon) ro�tate around another turtle (the Earth) which rotates around the origin (the Sun). We can easily specify two different speeds as two inputs for Eart.and.Moon command:

to Earth.and.Moon :E.speed :M.speed�	ask “Earth [setpos :E.speed / pos]�	let “E.pos ask “Earth [pos]�	let “M.temp :E.speed / ask “Moon [pos]�	ask “Moon [setpos :E.pos + :M.speed / (:M.temp - :E.pos)]�	Earth.and.Moon :E.speed :M.speed�end

�

We can also let both planets rotate around a point different from the origin, that is, we can shift our Solar system by a vector :A. Powerful transformations can be obtained by rotating a complete list of vectors by different angles. We can hardly imagine another data structure in Logo as potent as vectors. And yet, here it comes:

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �11�	Logo procedure

We have already worked with a concept of list of instructions which has considerably demol�ished our understanding of the differences between data and program. Each list of instructions can be run (evaluated) as a piece of program. We have also used the mechanism to name such list and referred to it later by the name. This is ordinary with ordinary data. This is also com�mon with procedural objects: we define commands and give them names. In this way a stu�dent (Logo newcomer) defines, for example, simple commands like my.dot or my.house – elementary commands without any input to draw a simple object. They may look similar to the following definitions – either with the repeat or not, it is not important now:

�to my.dot� setpc random 15� setpw 5 + random 50� dot�end�
���
to my.house� setpw 1 + random 8� setpc random 15� repeat 4 [fd 50 rt 90]� fd 50� rt 30� repeat 2 [fd 50 rt 120]�end�
��
�
As far as we do not believe any more that data and programs are different, we will accept that the name of a user-defined procedure may serve as an input to another procedure. This fact provides us with a powerful tool: we can use user-defined commands in a very com�plex way, thus offering a Logo beginner highly stimulating experience: several microworlds can be de�veloped for the student to discover basic ideas of turtle geometry yet doing com�plex things – beginner’s first steps can be set into seriously rich environment. To illustrate this idea let us deve�lop a KidPix-like scribbling tool by mouse: the elemen�tary free-hand drawing pro�ce�dure (provided by the microworld) will take one input – the name of a user-defined com�mand (like my.dot or my.house) and use it repeatedly while the student draws a free-mode line:

to scribble :proc� cs gs� tell 0� window pu� let “P [0 0]� scribble.loop :proc�end

to my.run :proc� seth towards mouse� lt 90� run (list :proc)� setpc 0 setpw 1� pu setpos mouse pd� end�
to scribble.loop :proc� case readkey ~� [27 [stop] ~� 0 [pu setpos mouse pd ~� make “P mouse] ~� -1 [setpos mouse ~� if abs :P - mouse > 30 ~� [my.run :proc ~� make “P mouse]]]� scribble.loop :proc�end�
�

Although many modifications of the scribble.loop can be defined, this one just uses the user-defined command :proc, then resets the previous pen colour, pen width and position so that no special restrictions are put on the student’s commands. In the next figure we see the re�sult of free-hand drawing by scribble (my.dot and scribble (my.house. However, we can go much further in this direction: instead of just using the user’s command, our mi�croworld can first process it and then use it. Not only the user-defined procedure’s name is a piece of data, also the procedure’s definition itself is! Indeed, Logo user-defined procedures are internally represented as lists of lists of instructions. We will call this structure a definition list. And there are Logo primitives which know this structure very well: text and define:

? sh text (my.dot�[[][setpc random 15][setpw 5 + random 50][dot]]

�

It is well known that the first line (first list within the definition list) is a list of all inputs names�. The crucial thing here is that the definition list can be processed by other Logo list processing tools, thus yielding a mutated definition list which may be turned by the define command into a proper Logo procedure (or even applied directly as a piece of program by the apply command!). Let us think about even simpler user-defined version of my.house com�mand (without setpc and setpw commands). As far as its definition list is a Logo list (of lists of words and/or lists), a lot of exciting transformations can be exercised on it, e.g.:

all occurrences of fd or forward can be replaced by another word, e.g. tricky.�fd. We can define several versions of the tricky.fd command to provide the student with different funny forwarding, see bellow,

each constant input to fd or forward commands can be parametrised so that random resizing of the drawing (e.g. of the house) can be performed,

the outline of the drawing can be computed in advance and (using polygon command) filled by the background colour prior the drawing itself is done (thus making it opaque).

to modify :proc :words :new� if not defined? :proc [stop]� op modify.it text :proc :words :new�end�to modify.it :l :words :new� if empty? :l [op []]� if word? :l ~� [if member? :l :words [op :new] ~� [op :l]]� op fput modify.it first :l :words :new ~� modify.it bf :l :words :new�end�
to tricky.fd :s� let “p pos� let “h heading� repeat 4 ~� [rt 4 - random 9 ~� fd :s + 4 - random 9 ~� rt 180]� pu setpos :p pd� seth :h� fd :s�end�
�
�

The modifications done in this way may result in ex�citing and surprisingly rich shapes. The rows of houses to the right were obtained by scribbling a mutation of my.house command: the scribble command has first modi�fied the definition list of my.house by all three trans�formations men�tioned above. Each fd and forward has been re�placed by tricky.fd (defined above) by:

modify (my.house [fd forward] (tricky.fd

The modified definition list was not run by run command in the scribble.loop, but applied to an empty list of inputs by:

apply :new.def.list []

� REF zoznam_datovych_struktur * MERGEFORMAT �3�.� SEQ podzoznam_data * MERGEFORMAT �12�	Logo PowerPoint-like screens

As the concluding stopping place of our Logo data structures guided tour we want to mention the pres�entation of this paper. A Logo project (we call it Logo PowerPoint) is used to get and visualise the description of each “page”. The page itself is a compound mixture of:

texts (with several style parameters),

lists of instructions describing events which should happen when appropriate,

references (by name) to other Logo projects (libraries) which are loaded to illus�trate the material described. These libraries consist of Logo procedures, variables and turtles, and are erased when not needed any more,

turtles to implement Windows-like buttons, screen animations and all special ef�fects.

In fact, these pages portray multi-level compound data objects which conquer the traditional distinction between active programs and passive data.

� SEQ chapters * MERGEFORMAT �4�	Open projects must rely upon data

In [7] we specified three important principles of active learning environments�, or mi�cro�worlds. We claimed there that interactivity, visualisation and openness should be present in each microworld to the highest possible extent as far as these are crucial properties to create learning atmosphere. By openness of a microworld we understand the extent at which a user can modify it. We suggested to distinguish three levels of openness: (1) openness at the level of data, (2) at the level of usage, and (3) at the level of the type of assignments.

Obviously, for a microworld to be open at level (1), data are essential to represent other num�bers, lists of other objects, other screens and images, other animations, proce�dures, sounds and video, other turtles, other Logo libraries… We find it very important that learners-de�vel�opers should acquire a clear understanding of what such modifications are: new screen, new as�signment, new behaviour means new data somehow represented in certain data structures.

� SEQ chapters * MERGEFORMAT �5�	Conclusion

Here follows the list (always those lists!) of reasons why we find data structures important, natural and inevitable part of so many Logo creative activities:

they belong to fundamental concepts of informatics and computer, they clarify that work�ing with computer (in very broad sense) means accepting certain exact rules, agreements,

they give us a means to explore the same objects from different perspectives, through dif�ferent representations and thus obtain ... insights that are not inherent in either of the rep�re�sentations alone, see [1],

they give us a way to cope with complex problems. Data structures help to ele�vate the conceptual level at which we can design our projects. To avoid data structures would mean to restrict the palette of topics to nearly nothing. On the other hand, involving data structures opens unexpected horizons of attractive Logo activities with never-ending inspi�rations,

they help us to earn a new perspective on the relationship between data and pro�gram,

they are essential means to develop open Logo projects.

References

Abelson, H. and diSessa, A.A.: Turtle Geometry. The Computer as a Medium for Ex�ploring Mathematics. The MIT Press, Cambridge, MA 1980

Abelson, H. and Sussman, G.J.: Structure and Interpretation of Computer Programs. The MIT Press, Cambridge, MA 1985

Blaho, A., Kalas, I. and Tomcsanyi, P.: Comenius Logo: Environment for Teachers and Envi�ronment for Learners. Proc. of EuroLogo 93, Athens, Supplement pp. 1 – 11, 1993

Blaho, A. and Kalas, I.: Playing, Developing and Computing With Images in Comen�ius Logo for Windows. Proc. of EuroLogo 95, Birmingham, pp. 15 – 19, 1995

Futchek, G. and Schauer, H.: Exploring Recursion: from Random Walks to the Design of Mazes. Proc. of EuroLogo 93, Athens, pp. 105 - 112, 1193

Harvey, B. and Wrigtht, M.: Simply Scheme – Introducing computer science. The MIT Press, Cambridge, MA 1994

Kalas, I. and Blaho, A.: New Implementation of Logo Opens What Should be Open (Developing and Implementing Active Learning Environments), Komputer w Edukacji, No. 2, pp. 5 – 14, 1995 (in Polish)

Tomcsanyiova, M. and Tomcsanyi, P.: Experimental IT Education for Lower Secon�dary School Us�ing Windows and Comenius Logo. To be found in the Proc. of EuroLogo 97, Budapest, 1997

1 Symbolic Computations and Logo, Informatics in Primary Education, Informatics in Secondary Education

2 Obviously, Lisp (mostly the Scheme language) and Logo connection is attractive for many outstanding com�puter science people, see [2], [1] or [6]

3 Latter we will see that the other context – programs is only vaguely different, if different at all.

� This is exciting about Logo: it inspires and encourages to experiment (to play) and advance by trials and errors in often unpredictable directions, thus discovering new possibilities.

� This operation finds in advance the size of an area which would be covered by the input text if the first active turtle typed it in the graphics screen.

� And also would have unpleasant consequences in Logo if the same happened, for example, for a melody being played by the play command!

� We definitely discourage the students from using unnecessary global variables. In our examples here we only want to illustrate the naming process as an important means of abstraction.

� Image is a valid atomic data type in Logo, an empty or non empty series of frames, i.e. of bit maps which are stored in LGW files and used in Logo projects. An image can be attached to any turtle as its shape. We characterised images in detail in [4] and [3].

� Turtle 0 is then erased. Its purpose is nothing more than follow a correct Hilbert curve and create all turtles.

� In fact, sequences (lists) of keys are closer to vector representation of geometric shapes (see bellow). They offer broad class of interesting list-processing exercises (e.g. rotating a list of keys by 90 degrees).

� For example: [n n w s e e n [ycor > 200] steps]

� In its well defined mathematical sense.

� Therefore it is empty for my.dot.

� Usually developed for learners but sometimes also by learners themselves, which is even more interesting.

	PLENARY LECTURES

EUROLOGO '97

	� PAGE �10�

� PAGE �1�

